Poincaré index of plane polynomial fields of third and fourth degree
نویسندگان
چکیده
منابع مشابه
control of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولEvaluation of third-degree and fourth-degree laceration rates as quality indicators.
OBJECTIVE To examine the patterns and predictors of third-degree and fourth-degree laceration in women undergoing vaginal delivery. METHODS We identified a population-based cohort of women in the United States who underwent a vaginal delivery between 1998 and 2010 using the Nationwide Inpatient Sample. Multivariable log-linear regression models were developed to account for patient, obstetric...
متن کاملThird- and fourth-degree perineal tears: prevalence and risk factors in the third millennium.
OBJECTIVE We sought to assess the modern prevalence and risk factors for third- and fourth-degree perineal tears. STUDY DESIGN The study population comprised 38,252 women who delivered in one medical center, from January 2005 through December 2009, and met the following inclusion criteria: singleton pregnancy, vertex presentation, and vaginal delivery. Of these, 96 women (0.25%) sustained thi...
متن کاملM-polynomial and degree-based topological indices
Let $G$ be a graph and let $m_{ij}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The {em $M$-polynomial} of $G$ is introduced with $displaystyle{M(G;x,y) = sum_{ile j} m_{ij}(G)x^iy^j}$. It is shown that degree-based topological indices can be routinely computed from the polynomial, thus reducing the problem of their determination in each particular ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series
سال: 2019
ISSN: 2524-2415,1561-2430
DOI: 10.29235/1561-2430-2019-55-1-22-31